# The Computational Complexity of Factored Graphs

Shreya Gupta Boy

Boyang Huang Ru

Russell Impagliazzo

Stanley Woo Christopher Ye

University of California San Diego

#### Factored Graph

A factored graph is a succinct graph representation  $G = f(G_1, ..., G_k)$  that combines input graphs  $G_1, ..., G_k$  into a single graph G using graph operations.



# Given two graphs G and H, we consider the following three **binary graph operations**:

|                   |               | Vertex Set         | Condition for $(\boldsymbol{g_1}, \boldsymbol{h_1}) \sim (\boldsymbol{g_2}, \boldsymbol{h_2})$ |
|-------------------|---------------|--------------------|------------------------------------------------------------------------------------------------|
| Cartesian product | $G \square H$ | $V(G) \times V(H)$ | $(g_1 = g_2 \land h_1 \sim h_2) \lor (h_1 = h_2 \land g_1 \sim g_2)$                           |
| Tensor product    | $G \times H$  | $V(G) \times V(H)$ | $g_1 \sim g_2 \wedge h_1 \sim h_2$                                                             |

|       |            | Vertex Set       | Edge Set         |
|-------|------------|------------------|------------------|
| Union | $G \cup H$ | $V(G) \cup V(H)$ | $E(G) \cup E(H)$ |

# Applications

- Practical instances of graphs and data structures are often highly structured
  - Road networks
  - Databases
  - Compounds in molecular geometry
  - Finite automata

**Question.** In addition to being a method to compress graph data, when can we also leverage the factored structure to derive a "better" algorithm?

#### Measuring Factored Graph Complexity

We say that a factored graph G = f(G<sub>1</sub>, ..., G<sub>k</sub>) is of complexity (n, k) if 1) each G<sub>i</sub> has at most n vertices 2) the formula f uses k input graphs\* \*counting with multiplicities

**Observation.** Every graph *G* has two *trivial* factored graph representations: 1) complexity (|V(G)|, 1) G = G. $G = \bigcup_{e \in E(G)} e.$ 

Interesting factored graph representations **balance** *n* and *k* in some meaningful way.

# Parameterized Complexity

For any graph problem, we can define a version where the **input is given as a factored graph**.

**Observation.** A factored graph of complexity (n, k) could have an explicit size of  $\Omega(n^{\kappa})$ .

**Question.** How does the factored representation affect the difficulty of a problem?

#### **Parameterized Complexity**

A parameterized problem is ...

in XP if it can be solved in time  $O(n^{f(k)})$  for some function f.

**fixed-parameter tractable (in FPT)** if it can be solved in time  $O(f(k)n^{O(1)})$  for some function f.

**Observation.** Any graph problem with poly-time algorithm has an  $n^{O(k)}$ -time algorithm on factored graphs of complexity (n, k) (i.e., in **XP**)

⊋

**Question.** Can we do better, i.e., in **FPT**?

#### Our Results - Overview

Theorem. On factored graph inputs,

- 1) Lexicographically First Maximal Independent Set (LFMIS) is not in FPT.
- 2) Counting Cliques is in FPT.
- **3)** Reachability is in FPT if and only if  $NL \subseteq DTIME(n^{C})$  for some absolute constant *C*.

Outline for the rest of the talk:

- More detailed definition of the graph operations
- Proof overview for Theorems 1) and 3)

The **Cartesian product**  $G \square H$  of two directed graphs G and H has **vertex set**  $V(G) \times V(H)$  and **directed edges**  $((g_1, h_1), (g_2, h_2))$  if either  $g_1 = g_2$  and  $(h_1, h_2) \in E(H)$ or  $h_1 = h_2$  and  $(g_1, g_2) \in E(G)$ .



The **tensor product**  $G \times H$  of two directed graphs G and H has **vertex set**  $V(G) \times V(H)$  and **directed edges**  $((g_1, h_1), (g_2, h_2))$  if  $(g_1, g_2) \in E(G)$  and  $(h_1, h_2) \in E(H)$ .



One way of thinking about tensor products: **conjunction of edge conditions** 

The **tensor product**  $G \times H$  of two directed graphs G and H has vertex set  $V(G) \times V(H)$  and directed edges  $((g_1, h_1), (g_2, h_2))$  if  $(g_1, g_2) \in E(G)$  and  $(h_1, h_2) \in E(H)$ .



Another way of thinking about tensor products: embedding relations into structure

The union  $G \cup H$  of two directed graphs G and H has vertex set  $V(G) \cup V(H)$  and edge set  $E(G) \cup E(H)$ .



Useful to decompose graph into repetitive sub-structures.

# Lexicographically First Maximal Independent Set

Input: graph G = (V, E), with vertex indices  $V = \{0, 1, ..., |V| - 1\}$ , and a special vertex  $s \in V$ . Output: whether s belongs to the lexicographically first maximal independent set of G



**Theorem 1.** Lexicographically First Maximal Independent Set on factored graphs is unconditionally **not in FPT**. In particular, it is **XP-complete under FPT-reductions** and requires  $n^{\Omega(\sqrt{k})}$ -time on factored graphs of complexity (n, k).

#### Proof Ideas - LFMIS

**Observation.** In the Lexicographically First Maximal Independent Set problem:

- 1) lexicographic first  $\rightarrow$  sequential order
  - 2) independent set  $\rightarrow$  constraint

Key Idea. Given a TM M, construct a graph G whose LFMIS inductively recovers the computation of M



Computational History Matrix of a TM

**Cluster**: set of all possible choices for the corresponding entry



G

# Graph Construction

What can we say if the center entry is (q, a)and  $\delta(q, a) = (q', a', R)$ ?



Computational History Matrix of a TM Running Time T = 3



# Reachability

**Theorem 3.** Reachability on factored graphs is **XNL-complete under FPT-reductions.** Moreover, the following are equivalent: 1) **XNL**  $\subseteq$  **FPT** (in particular, reachability) 2) **NL**  $\subseteq$  **DTIME**( $n^{C}$ ) for some absolute constant *C*.

A parameterized problem is in **XNL** if it can be solved in  $O(f(k) \log n)$  nondeterministic space.

**Remark.** Recall that (standard) Reachability is complete for the class **NL**. [Sip96]

## Proof Ideas - Reachability

Theorem 3. Reachability on factored graphs is XNL-complete under FPT-reductions.

NL-Complete Proof for Standard Reachability. [Sip96]

- For a language  $L \in \mathbf{NL}$ , there is a **non-deterministic TM** M that decides L in  $S \log n$  space (S constant).
- Construct a **configuration graph** of *M* on input *x*.
- $x \in L \Leftrightarrow$  there is a path from initial configuration to accepting configurations.



Example configuration graph with S = 3.

## Proof Ideas - Reachability

Attempt: XNL-Complete Proof for Reachability on Factored Graphs.

- For a language  $L \in XNL$ , there is a **non-deterministic TM** M that decides L in  $f(k) \log n$  space.
- Construct a **configuration graph** of *M* on input *x*.
- $x \in L \Leftrightarrow$  there is a path from initial configuration to accepting configurations.



Example configuration graph with f(k) = 3.

Recall tensor products



#### Proof Ideas - Reachability

**Problem.** # of configurations on an  $f(k) \log n$ -sized work tape grows exponentially in f(k).

**Solution.** Decompose the work tape into f(k) segments of size  $\log n$ , then use graph products to combine.



**Upshot.** The configuration graph has a factored graph rep. of complexity  $(n^{0(1)}, g(f(k)))$  for some function g.

# Wrapup

- We studied the computational complexity of various problems on factored graphs.
  - Lexicographically First Maximal Independent Set (not FPT)
  - Clique Counting (FPT)
  - Reachability (open)
- Future Work
  - Do similar results hold for other complete problems?
  - More *fine-grained* analysis: there is still room for improvement from the naïve  $n^{O(k)}$ -time algorithm.
  - Can we define natural factored instances on other interesting objects?

# Thank you!

arXiv:2407.19102